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® Different label distributions for each of the domains BoDA establishes new SOTA on DG benchmarks

® Multi-domain data inherently involves domain shift
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Diff domains, same class: o = EEJEpq [trans((d, c), (d c))]
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Code: https://github.com/YyzHarry/multi-domain-imbalance

Implication #1: Lg,pa upper-bounds («, 3, ) statistics in a desired form that naturally translates to better performance.
Implication #2: The constant factors correspond to how much each component contributes to the transferability graph.

Project page: http://mdlt.csail.mit.edu/
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