

On Multi-Domain Long-Tailed Recognition, Imbalanced Domain Generalization and Beyond

 $Yuzhe\ Yang^1$

 $\mathsf{Hao}\;\mathsf{Wang}^2$

 $\mathsf{Dina}\;\mathsf{Katabi}^1$

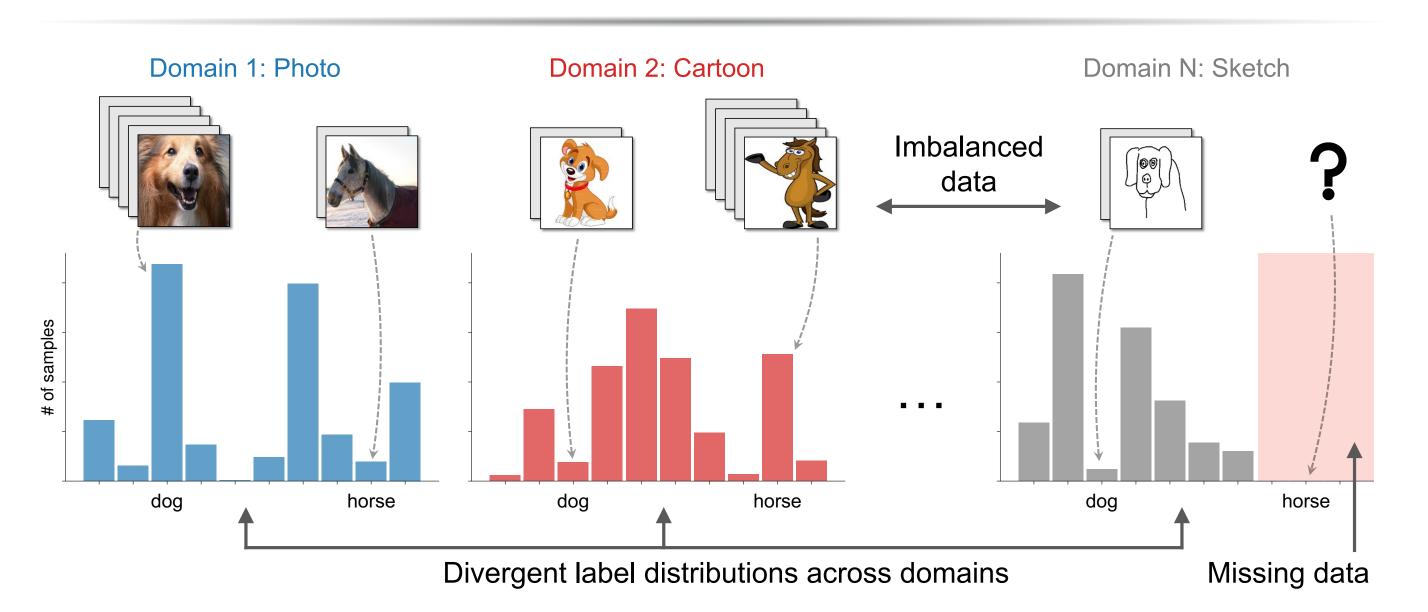
 1 MIT CSAIL

²Rutgers University

Background & Motivation

- Existing studies on data imbalance focus on single domain
- 2 Yet, data for one task can originate from distinct domains
- A minority class in one domain can have many samples from other domains, which can help for generalization

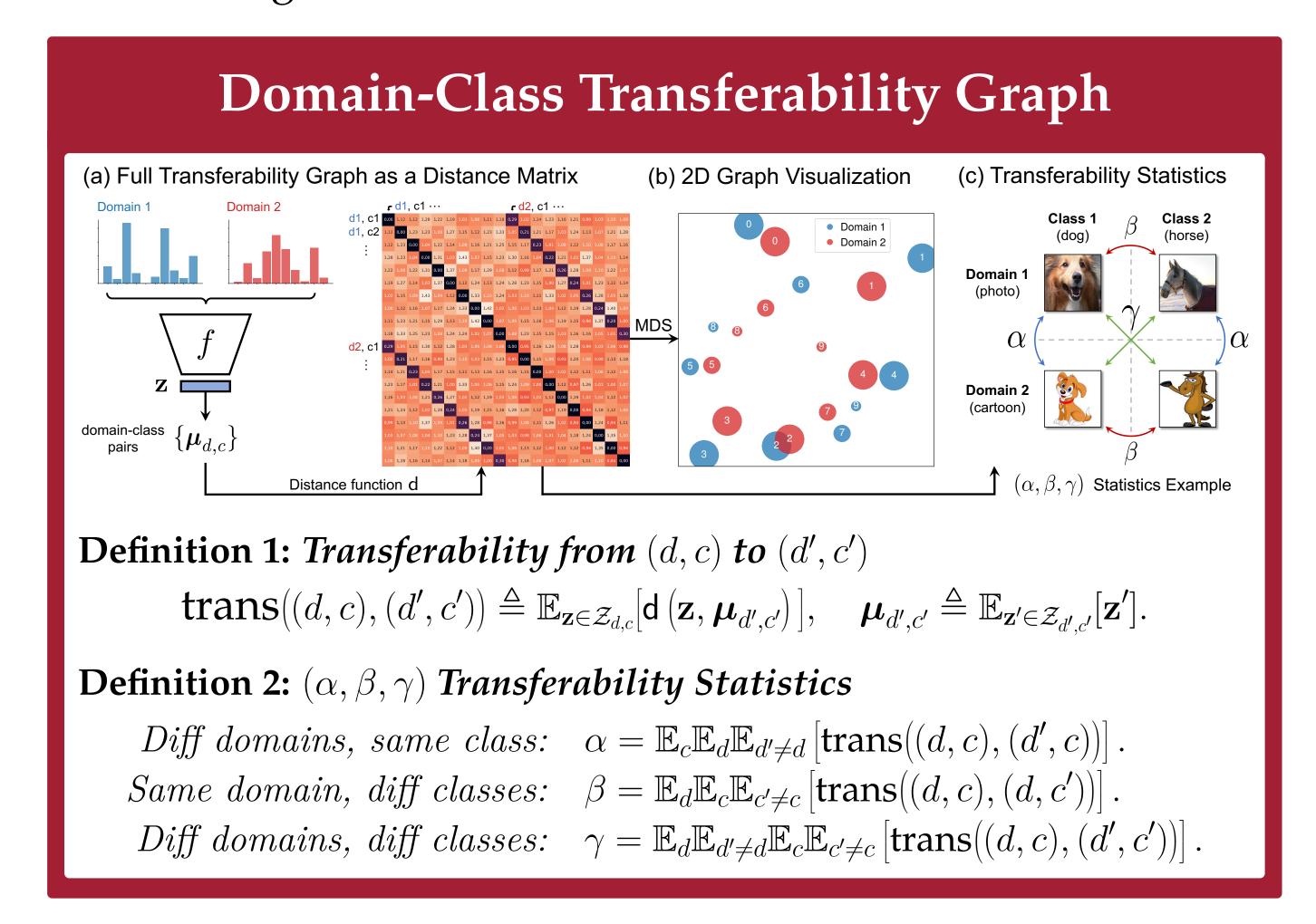
Multi-Domain Long-Tailed Recognition (MDLT)



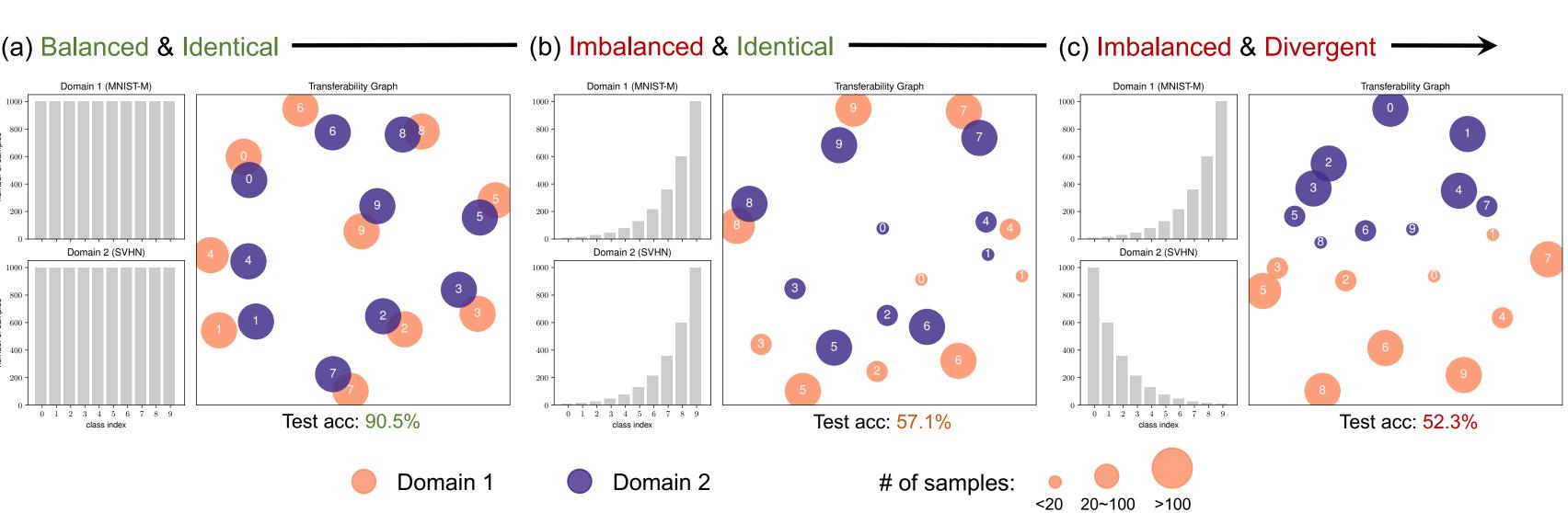
MDLT learns from multi-domain imbalanced data, tackles *label imbalance*, *domain shift*, and *divergent label distributions across domains*, and generalize to *all* domain-class pairs

Challenges:

- Different label distributions for each of the domains
- Multi-domain data inherently involves domain shift
- 3 Zero-shot generalization within and across domains



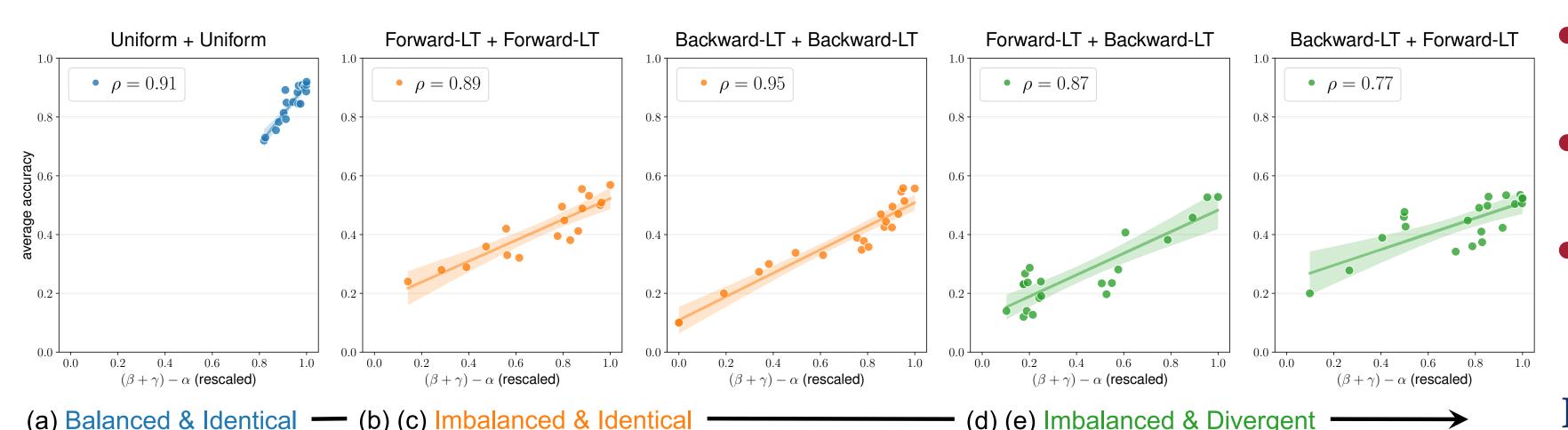
Observation #1: Divergent Label Distributions Hamper Transferable Features



- Digits-MLT, a two-domain toy MDLT dataset
- ResNet-18 trained using ERM with different label distributions across domains (gray histograms)
- Different patterns of learned transferability graph:
- Balanced & Identical: transferable features, high accuracy
- 2 Imbalanced & Identical: transferable features (majority better than minority classes), moderate accuracy
- 3 *Imbalanced* & *Divergent*: features no longer transferable; clear gap across domains; worst accuracy

Implication: Transferable features needed in MDLT.

Observation #2: Transferability Statistics Characterize Generalization



- Different label configurations for Digits-MLT:
- Uniform / Forward-LT / Backward-LT
- 20 ERM models with varying hyperparameters trained for each configuration (each dot a model)
- Plot test accuracy against $(\beta + \gamma \alpha)$ quantity:
- Strong correlation across all ranges / label configurations
- 2 Imbalance boosts risk of learning less transferable features

Implication: (α, β, γ) statistics characterize model performance in MDLT.

BoDA: A Loss that Bounds the Transferability Statistics

Recall: (α, β, γ) statistics governs the success in MDLT – smaller α and larger β, γ lead to better model performance

A First Approach: Domain-Class Distribution Alignment (\mathcal{L}_{DA})

 $\mathcal{L}_{DA}(\mathcal{Z}, \{\boldsymbol{\mu}\}) = \sum_{\mathbf{z}_i \in \mathcal{Z}} \frac{-1}{|\mathcal{D}| - 1} \sum_{d \in \mathcal{D} \setminus \{d_i\}} \log \frac{\exp\left(-\mathsf{d}(\mathbf{z}_i, \boldsymbol{\mu}_{d, c_i})\right)}{\Sigma_{(d', c') \in \mathcal{M} \setminus \{(d_i, c_i)\}} \exp\left(-\mathsf{d}(\mathbf{z}_i, \boldsymbol{\mu}_{d', c'})\right)}.$

- **Pros:** tackles label *divergence* numerator \rightarrow *positive* cross-domain pairs (α); denominator \rightarrow *negative* cross-class pairs (β, γ)
- Cons: does not address label imbalance independent of the number of samples in each (d, c), thus dominated by majority (d, c)

 $\underline{\textbf{B}} \textbf{alanced D\underline{o}} \textbf{main-Class } \underline{\textbf{D}} \textbf{istribution } \underline{\textbf{A}} \textbf{lignment (BoDA)}. \qquad \mathcal{L}_{\texttt{BoDA}}(\mathcal{Z}, \{\boldsymbol{\mu}\}) = \sum_{\mathbf{z}_i \in \mathcal{Z}} \frac{-1}{|\mathcal{D}|-1} \sum_{d \in \mathcal{D}\setminus \{d_i\}} \log \frac{\exp\left(-\widetilde{\textbf{d}}(\mathbf{z}_i, \boldsymbol{\mu}_{d,c_i})\right)}{\sum_{(d',c') \in \mathcal{M}\setminus \{(d_i,c_i)\}} \exp\left(-\widetilde{\textbf{d}}(\mathbf{z}_i, \boldsymbol{\mu}_{d',c'})\right)}, \ \ \widetilde{\textbf{d}}(\mathbf{z}_i, \boldsymbol{\mu}_{d,c}) = \frac{\textbf{d}(\mathbf{z}_i, \boldsymbol{\mu}_{d,c})}{N_{d_i,c_i}}.$

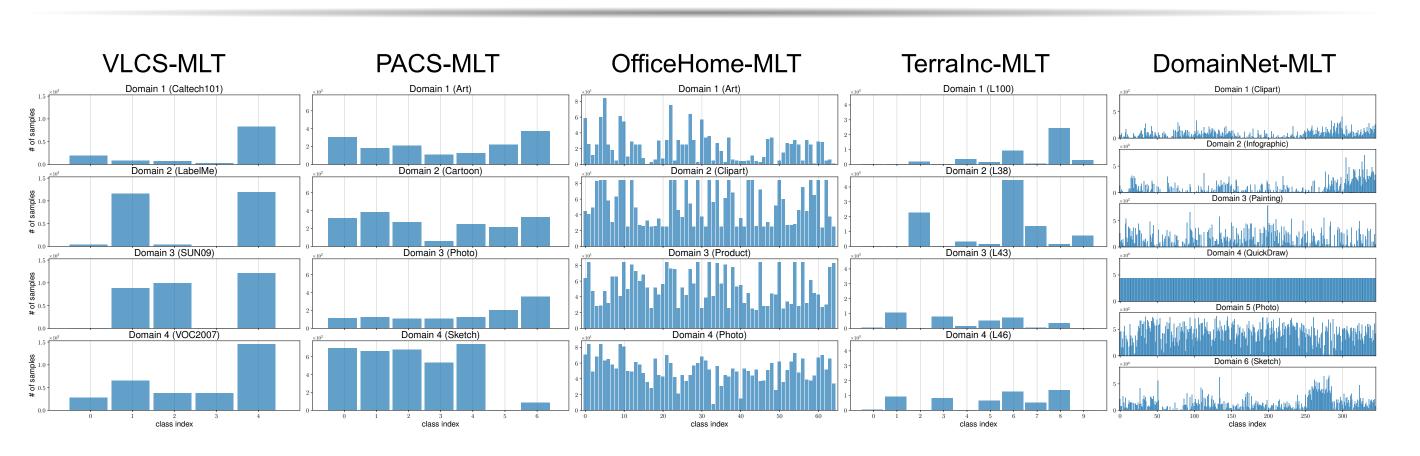
• BoDA scales original d by a factor of $1/N_{d_i,c_i}$ – it counters the effect of imbalanced (d,c) by introducing a balanced distance \bar{d} .

Theorem 1 (\mathcal{L}_{BoDA} as an Upper Bound). Given a multi-domain long-tailed dataset \mathcal{S} with domain label space \mathcal{D} and class label space \mathcal{C} satisfying $|\mathcal{D}| > 1$ and $|\mathcal{C}| > 1$, let (α, β, γ) be the transferability statistics for \mathcal{S} . It holds that

$$\mathcal{L}_{\mathsf{BoDA}}(\mathcal{Z}, \{\boldsymbol{\mu}\}) \ge N \log \left(|\mathcal{D}| - 1 + |\mathcal{D}|(|\mathcal{C}| - 1) \exp \left(\frac{|\mathcal{C}||\mathcal{D}|}{N} \cdot \alpha - \frac{|\mathcal{C}|}{N} \cdot \beta - \frac{|\mathcal{C}|(|\mathcal{D}| - 1)}{N} \cdot \gamma \right) \right).$$

Implication #1: \mathcal{L}_{BoDA} upper-bounds (α, β, γ) statistics in a desired form that naturally translates to better performance. **Implication #2:** The constant factors correspond to how much each component contributes to the transferability graph.

MDLT Benchmarks + Results



5 MDLT benchmark datasets $/\sim$ 20 baseline algorithms

Algorithm	VLCS-MLT	PACS-MLT	OfficeHome-MLT	TerraInc-MLT	DomainNet-MLT	Avg
ERM	76.3 ± 0.4	97.1 ±0.1	80.7 ± 0.0	75.3 ± 0.3	58.6 ± 0.2	77.6
Current SOTA	75.9 ± 0.5	96.6 ± 0.5	81.9 ± 0.1	76.4 ± 0.5	59.4 ± 0.1	78.0
BoDA	78.2 ±0.4	97.1 ± 0.2	82.4 ±0.2	83.0 ± 0.4	61.7 ±0.2	80.5
BoDA vs. ERM	+1.9	+0.1	+1.7	+7.7	+3.1	+2.9

Beyond MDLT: Domain Generalization

- Domain generalization (DG)
- Learn from multiple domains & generalize to unseen domains
- Data imbalance is an intrinsic problem in DG
- 1 Learning domains naturally differ in their label distributions
- 2 Domains can have (severe) class imbalance within each domain

BoDA establishes new SOTA on DG benchmarks

Algorithm	VLCS	PACS	OfficeHome	TerraInc	DomainNet	Avg
ERM	77.5 ±0.4	85.5 ± 0.2	66.5 ± 0.3	46.1 ±1.8	40.9 ± 0.1	63.3
Current SOTA	78.8 ± 0.6	86.2 ± 0.3	68.7 ± 0.3	47.6 ± 1.0	41.5 ± 0.1	64.5
BoDA	78.5 ± 0.3	86.9 ±0.4	69.3 ±0.1	50.2 ±0.4	42.7 ±0.1	65.5
BoDA + Current SOTA	79.1 ±0.1	87.9 ± 0.5	69.9 ± 0.2	50.7 ± 0.6	43.5 ± 0.3	66.2
BoDA vs. ERM	+1.6	+2.4	+3.4	+4.6	+2.6	+2.9

Implication: Label imbalance affects out-of-distribution generalization, and is crucial for DG algorithm design.

Conclusion & More Information

New Task

MDLT

Domain-Class Trans. Graph
BoDA

Tode: https://github.com/YyzHarry/multi-domain-imbalance

Project page: http://mdlt.csail.mit.edu/